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• most booster engines operate at supercritical conditions
• current understanding not sufficient to support design optimization
• most booster engines operate at supercritical conditions
• current understanding not sufficient to support design optimization
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PENNPENNSSTATETATE Flow Diagram of RDFlow Diagram of RD--170 Engine170 Engine

– Energia booster and Zenit first stage, up to 10 flights.
– LOX/kerosene, one main two boost turbopumps
– 806 ton thrust (vacuum), 337 seconds of Isp, O/F ratio of 2.63
– Chamber pressure 250 bar, turbine inlet pressure 519 bar and temperature 772 K
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• Tamura et al. / NAL (Japan)
• Mayer, Oschwald, Haidn, etc. / DLR (Germany)
• Habiballah,Vingert, Grisch, etc. / ONERA (France)

Candel et al. / Ecole Central Paris (France)
• Woodward, Pal, Santoro, etc. / Penn State (USA)

Talley, Chehroudi, etc. / AFRL (USA)  
Blevins, Morris, etc. / NASA Marshall (USA)

• Tamura et al. / NAL (Japan)
• Mayer, Oschwald, Haidn, etc. / DLR (Germany)
• Habiballah,Vingert, Grisch, etc. / ONERA (France)

Candel et al. / Ecole Central Paris (France)
• Woodward, Pal, Santoro, etc. / Penn State (USA)

Talley, Chehroudi, etc. / AFRL (USA)  
Blevins, Morris, etc. / NASA Marshall (USA)

TLOX ~ 100 K
dLOX ~ 1 mm
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PENNPENNSSTATETATE Worldwide Efforts on Supercritical Combustion Research (2/2)Worldwide Efforts on Supercritical Combustion Research (2/2)

injector
elementspraydroplet full-scale 

engine

• Oefelein / DoE Sandia Lab. (USA)
• Bellan / NASA JPL (USA)
• Farmer / U. of Nevada (USA)
• Habiballah, et al. / ONERA (France)
• Yang / Penn State (USA)

• Oefelein / DoE Sandia Lab. (USA)
• Bellan / NASA JPL (USA)
• Farmer / U. of Nevada (USA)
• Habiballah, et al. / ONERA (France)
• Yang / Penn State (USA)
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PENNPENNSSTATETATE Shadowgraph Results Shadowgraph Results –– LN2 into GN2LN2 into GN2
Chehroudi et. al., AIAA 99Chehroudi et. al., AIAA 99--0206, AIAA 990206, AIAA 99--24892489

pcr = 3.39 MPa,  Tcr = 126 K,  T∞ = 300 K,  Tin = 99 ~ 120 K

uin = 10 ~ 15 m/s,    Din = 0.254 mm,    Re = 25,000 ~ 75,000

pcr = 3.39 MPa,  Tcr = 126 K,  T∞ = 300 K,  Tin = 99 ~ 120 K

uin = 10 ~ 15 m/s,    Din = 0.254 mm,    Re = 25,000 ~ 75,000

Pr=0.23 Pr=0.43 Pr=0.63 Pr=0.83 Pr=1.03

Pr=1.23 Pr=1.64 Pr=2.03 Pr=2.44 Pr=2.74



Department of Mechanical & Nuclear Engineering 

PENNPENNSSTATETATE Characteristics of Supercritical Fluid JetCharacteristics of Supercritical Fluid Jet

 

p = 1.0 MPa p = 4.0 MPa

p = 2.0 MPa p = 4.0 MPa

• Thermodynamic non-idealities and transport anomalies
in transcritical regime
- rapid property variations   - large density gradient

• Diminishment of surface tension and enthalpy of vaporization
• Pressure-dependent solubility
• High Reynolds number

• Thermodynamic non-idealities and transport anomalies
in transcritical regime
- rapid property variations   - large density gradient

• Diminishment of surface tension and enthalpy of vaporization
• Pressure-dependent solubility
• High Reynolds number

Mayer et al. 
AIAA 1996-2620
TLN2 = 105 K
TGN2  = 300 K
uLN2 = 10 m/s
Din = 1.9 mm

Mayer et al. 
AIAA 1996-2620
TLN2 = 105 K
TGN2  = 300 K
uLN2 = 10 m/s
Din = 1.9 mm
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• Pressure increases from 1 to 102 atm, Ret increases by 102

• Kolmogorov microscale ηt/lt~ Ret
-3/4 (decrease by 1.5 order)

• Taylor microscale λt/lt~ Ret
-1/2 (decrease by 1.0 order)

• Pressure increases from 1 to 102 atm, Ret increases by 102

• Kolmogorov microscale ηt/lt~ Ret
-3/4 (decrease by 1.5 order)

• Taylor microscale λt/lt~ Ret
-1/2 (decrease by 1.0 order)
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• Favre-filtered
conservation
equations

• Favre-filtered
conservation
equations

• Thermodynamic and transport properties

• Subgrid-scale turbulence interaction

• Chemical kinetics

• Thermodynamic and transport properties

• Subgrid-scale turbulence interaction

• Chemical kinetics
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• Soave-Redlich-Kwong (SRK)

• Peng-Rubinson (PR)

• Benedict-Webb-Rubin (BWR)

• Soave-Redlich-Kwong (SRK)
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• Benedict-Webb-Rubin (BWR)
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• Sensible enthalpy: 

• Internal energy:

• Specific heat
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PENNPENNSSTATETATE ThermophysicalThermophysical Properties of NitrogenProperties of Nitrogen

• compressibility factor• compressibility factor • specific heat• specific heat

• thermal conductivity• thermal conductivity• dynamic viscosity• dynamic viscosity
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PENNPENNSSTATETATE Droplet Vaporization and CombustionDroplet Vaporization and Combustion
in Quiescent and Convective Environmentsin Quiescent and Convective Environments

• Liquid oxygen (LOX) droplet vaporization & combustion in hydrogen
and water

• Liquid oxygen (LOX) droplet vaporization & combustion in hydrogen
and water

0

5 < p < 300 atm
500 < T < 2500 K
50 < D < 300 µm

∞

∞

• Hydrocarbon droplet vaporization & combustion in air and oxygen• Hydrocarbon droplet vaporization & combustion in air and oxygen

0

5 < p < 200 atm
300 < T < 2500 K
100 < D < 1000 µm

∞

∞

• Unsymmetrical dimethylhydrazine (UDMH) droplet vaporization and 
decomposition combustion

• Unsymmetrical dimethylhydrazine (UDMH) droplet vaporization and 
decomposition combustion

1 < p < 180 atm∞
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PENNPENNSSTATETATE Breakup Mode (100 atm, 15 m/s; t=170 µs)
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P∞=100 atm, T∞=1000 K, u∞ =20 m/s, T0=100 K, d0=50 µm, H/R=8
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PENNPENNSSTATETATE Effect of Pressure and Velocity on Droplet LifetimeEffect of Pressure and Velocity on Droplet Lifetime

• atmospherical condition
– Ranz and Marshall’s correlation

• supercritical condition
– LOX/hydrogen system

• atmospherical condition
– Ranz and Marshall’s correlation

• supercritical condition
– LOX/hydrogen system
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• effect of ambient pressure on
– thermophysical properties
– critical mixing state
– convective heat transfer

• effect of ambient velocity on
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PENNPENNSSTATETATE Supercritical Fluid InjectionSupercritical Fluid Injection

p∞ = 3.4 - 10.0 MPa , T∞ = 300 K, 
Tin  = 120 K , Din = 0.254 mm,  
uin = 15 m/s, Re = 20000 – 40000

p∞ = 3.4 - 10.0 MPa , T∞ = 300 K, 
Tin  = 120 K , Din = 0.254 mm,  
uin = 15 m/s, Re = 20000 – 40000

pch = 4.0 MPa
TLN2 = 105 K 
TGN2  = 300 K  
uLN2 = 10 m/s
Din = 1.9 mm

pch = 4.0 MPa
TLN2 = 105 K 
TGN2  = 300 K  
uLN2 = 10 m/s
Din = 1.9 mm
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PENNPENNSSTATETATE Shadowgraph Images of Cryogenic Nitrogen InjectionShadowgraph Images of Cryogenic Nitrogen Injection
Mayer et al. AIAA 2001Mayer et al. AIAA 2001--32753275

(p∞= 6.0 MPa, T∞= 300 K, uin=  4.9 m/s, Tin= 132 K, Din= 2.2 mm)(pp∞∞= 6.0 = 6.0 MPaMPa, T, T∞∞= 300 K, = 300 K, uuinin=  4.9 m/s, T=  4.9 m/s, Tinin= 132 K, D= 132 K, Dinin= 2.2 mm)= 2.2 mm)
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Din=0.254mm

uin=15m/s α

Potential Core Transition Region Self-Similar Region

L/Din=40

d/D
in =20

total grids   

225×75 ×72 = 1,215,000
mean grid spacing in 
near injector region
∆ = 5  µm  

total grids   

225×75 ×72 = 1,215,000
mean grid spacing in 
near injector region
∆ = 5  µm  

• Kolmogorov microscale  ηt/lt~ Ret
-3/4

• Taylor microscale   λt/lt~ Ret
-1/2

• and

• 3< λt <5 µm 

• Kolmogorov microscale  ηt/lt~ Ret
-3/4

• Taylor microscale   λt/lt~ Ret
-1/2

• and

• 3< λt <5 µm 

3.4 10.0 chp MPa≤ ≤ mmDin 254.0=
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PENNPENNSSTATETATE Density Gradient FieldDensity Gradient Field

(p∞= 9.3 MPa, T∞= 300 K, uin= 15 m/s, Tin= 120 K, Din= 254 µm)(p(p∞∞= 9.3 = 9.3 MPaMPa, T, T∞∞= 300 K, = 300 K, uuinin= 15 m/s, T= 15 m/s, Tinin= 120 K, D= 120 K, Dinin= 254 = 254 µµm)m)
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PENNPENNSSTATETATE Time Evolution of Density Gradient FieldTime Evolution of Density Gradient Field

(p∞= 6.9 MPa, T∞= 300 K, uin= 15 m/s, Tin= 120 K, Din= 254 µm)(p(p∞∞= 6.9 = 6.9 MPaMPa, T, T∞∞= 300 K, = 300 K, uuinin= 15 m/s, T= 15 m/s, Tinin= 120 K, D= 120 K, Dinin= 254 = 254 µµm)m)
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PENNPENNSSTATETATE Snapshots of Density and Temperature Gradient FieldsSnapshots of Density and Temperature Gradient Fields

(p∞= 9.3MPa, T∞= 300K, uin= 15m/s, Tin= 120K, t= 1.550ms, Din= 254µm)(p(p∞∞= 9.3MPa, T= 9.3MPa, T∞∞= 300K, = 300K, uuinin= 15m/s, T= 15m/s, Tinin= 120K, t= 1.550ms, D= 120K, t= 1.550ms, Dinin= 254= 254µµm)m)

x/Din
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PENNPENNSSTATETATE Most Energy Containing POD Modes of Axial VelocityMost Energy Containing POD Modes of Axial Velocity

(p∞= 9.3 MPa, T∞= 300 K, uin= 15 m/s, Tin= 120 K, Din= 254 µm)(p(p∞∞= 9.3 = 9.3 MPaMPa, T, T∞∞= 300 K, = 300 K, uuinin= 15 m/s, T= 15 m/s, Tinin= 120 K, D= 120 K, Dinin= 254 = 254 µµm)m)
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PENNPENNSSTATETATE IsoIso--Surfaces of Pressure and Density Gradients Surfaces of Pressure and Density Gradients 

(p∞= 9.3 MPa, T∞= 300 K, uin= 15 m/s, Tin= 120 K, Din= 254 µm)(p(p∞∞= 9.3 = 9.3 MPaMPa, T, T∞∞= 300 K, = 300 K, uuinin= 15 m/s, T= 15 m/s, Tinin= 120 K, D= 120 K, Dinin= 254 = 254 µµm)m)
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PENNPENNSSTATETATE Effect of Pressure on Density and Temperature Fields Effect of Pressure on Density and Temperature Fields 

T∞= 300K, uin= 15m/s, Tin= 120K, Din= 254µm)TT∞∞= 300K, = 300K, uuinin= 15m/s, T= 15m/s, Tinin= 120K, D= 120K, Dinin= 254= 254µµm)m)
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PENNPENNSSTATETATE Power Spectral Densities of Velocity FluctuationsPower Spectral Densities of Velocity Fluctuations

(p∞= 9.3MPa, T∞= 300K, uin= 15m/s, Tin= 120K, Din= 254µm)(p(p∞∞= 9.3MPa, T= 9.3MPa, T∞∞= 300K, = 300K, uuinin= 15m/s, T= 15m/s, Tinin= 120K, D= 120K, Dinin= 254= 254µµm)m)
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Large density-gradient regions act like a solid wall that amplifies the 
axial turbulent fluctuation but damps the radial one.
Large density-gradient regions act like a solid wall that amplifies the 
axial turbulent fluctuation but damps the radial one.
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PENNPENNSSTATETATE Vortex Shedding FrequencyVortex Shedding Frequency

(p∞= 9.3MPa, T∞= 300K, uin= 15m/s, Tin= 120K, Din= 254µm)(p(p∞∞= 9.3MPa, T= 9.3MPa, T∞∞= 300K, = 300K, uuinin= 15m/s, T= 15m/s, Tinin= 120K, D= 120K, Dinin= 254= 254µµm)m)

Jet flow instability analysis
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• Two-dimensional fluid jet instability 
at supercritical conditions.

• Unified treatment of real-fluid 
thermodynamics and transport 
phenomena.

• Disperse equation solved by Newton-
Ralpson method.

• Two-dimensional fluid jet instability 
at supercritical conditions.

• Unified treatment of real-fluid 
thermodynamics and transport 
phenomena.

• Disperse equation solved by Newton-
Ralpson method.

Approach

Annular Flow   a

Annular Flow   a

Central flow    b

z z

x u Density

z

• As the density ratio increases, the spatial 
growth rate of the interfacial instability wave 
decreases.           Density stratification tends 
to stabilize the mixing layer.

• Density stratification has little effect on the 
frequency of the most unstable mode.

• As the density ratio increases, the spatial 
growth rate of the interfacial instability wave 
decreases.           Density stratification tends 
to stabilize the mixing layer.

• Density stratification has little effect on the 
frequency of the most unstable mode.
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PENNPENNSSTATETATE BiBi--Propellant Swirl CoPropellant Swirl Co--Axial InjectorAxial Injector
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PENNPENNSSTATETATE Large Eddy Simulation of Swirling Oxygen JetLarge Eddy Simulation of Swirling Oxygen Jet

Issues

• Swirling jet dynamics at supercritical 
conditions.

• Flame stabilization mechanisms of swirl 
co-axial injector.

• Liquid rocket thrust chamber dynamics.

• Swirling jet dynamics at supercritical 
conditions.

• Flame stabilization mechanisms of swirl 
co-axial injector.

• Liquid rocket thrust chamber dynamics.

Swirl
cone
angle

Oxygen

Hydrogen

Major Results

• Liquid film thickness and swirl cone angle.

• Detailed flow structures, including central 
recirculation zone, surface instability, etc.

• Response of injector dynamics to external 
forcing.

• Liquid film thickness and swirl cone angle.

• Detailed flow structures, including central 
recirculation zone, surface instability, etc.

• Response of injector dynamics to external 
forcing.
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PENNPENNSSTATETATE LOX/Kerosene LOX/Kerosene PreburnerPreburner Swirl InjectorSwirl Injector
(Wu, et al., unpublished data, 2003)

                 Kerosene 
 

     LOX                                     LOX 
 

                                           Retractive
                                           chamber 
                         h 

 
  

Secondary injection   Secondary injection

oxidizer-rich preburner injectoroxidizer-rich preburner injector damaged inner centrifugal injectordamaged inner centrifugal injector
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PENNPENNSSTATETATE Time Evolution of  Swirling JetTime Evolution of  Swirling Jet

(p∞=10.0 MPa, T∞=300 K, uinj= 30 m/s, Tinj= 120 K, θ=30°, nitrogen )(p(p∞∞=10.0 =10.0 MPaMPa, T, T∞∞=300 K, =300 K, uuinjinj= 30 m/s, = 30 m/s, TTinjinj= 120 K, = 120 K, θθ=30=30°°, nitrogen, nitrogen ))
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PENNPENNSSTATETATE Time Evolution of  Swirling JetTime Evolution of  Swirling Jet

(p∞=10.0 MPa, T∞=300 K, uinj= 30 m/s, Tinj= 120 K, θ=30°, nitrogen )(p(p∞∞=10.0 =10.0 MPaMPa, T, T∞∞=300 K, =300 K, uuinjinj= 30 m/s, = 30 m/s, TTinjinj= 120 K, = 120 K, θθ=30=30°°, nitrogen, nitrogen ))
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PENNPENNSSTATETATE Disintegration of Swirling Water JetDisintegration of Swirling Water Jet
((InamuraInamura, Tamura and Sakamoto, JPP, 2003), Tamura and Sakamoto, JPP, 2003)

Water Injection, L/D=11.67, K=1.0Water Injection, L/D=11.67, K=1.0

• A hollow cone sheet forms around the injector exit.

• The conical sheet fluctuates vigorously and disintegrates into ligaments and droplets at the 
sheet tip.

• The sheet breakup point approaches the injector as the liquid flow rate increases.

• A hollow cone sheet forms around the injector exit.

• The conical sheet fluctuates vigorously and disintegrates into ligaments and droplets at the 
sheet tip.

• The sheet breakup point approaches the injector as the liquid flow rate increases.
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PENNPENNSSTATETATE Theoretical Analysis of Swirl Injector (1/2)Theoretical Analysis of Swirl Injector (1/2)

( Inamura et al.     
JPP, 2003 )

( Inamura et al.     
JPP, 2003 )

AssumptionsAssumptions

• Liquid flow is planar two dimensional. • Liquid flow is planar two dimensional. 

• Effects of the surrounding gas and streamwise pressure gradient on the liquid-film 
behavior are ignored. 

• Effects of the surrounding gas and streamwise pressure gradient on the liquid-film 
behavior are ignored. 

• Momentum of the liquid film is conserved at transition from laminar to turbulent.• Momentum of the liquid film is conserved at transition from laminar to turbulent.
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PENNPENNSSTATETATE Theoretical Analysis of Swirl Injector (2/2)Theoretical Analysis of Swirl Injector (2/2)

Film Thickness at Post ExitFilm Thickness at Post Exit
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Limiting Extremes: 2) Diffusion Processes DominateLimiting Extremes: 2) Diffusion Processes Dominate
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PENNPENNSSTATETATE Burning LOX Jet at Supercritical PressureBurning LOX Jet at Supercritical Pressure
((Mayer, DLR, GermanyMayer, DLR, Germany; ; Tamura, NAL, Japan)Tamura, NAL, Japan)

(uLOX = 30 m/s, uH2
= 300 m/s, TLOX = 100 K, TH2

= 300 K, p = 6 MPa)(uLOX = 30 m/s, uH2
= 300 m/s, TLOX = 100 K, TH2

= 300 K, p = 6 MPa)
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PENNPENNSSTATETATE Supercritical Injector Flow and Flame DynamicsSupercritical Injector Flow and Flame Dynamics

H2

LOX

H2

Combined OH emission and backlighting images (Ph.D thesis of Matthew Juniper)
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PENNPENNSSTATETATE LOX/Hydrogen ShearLOX/Hydrogen Shear--Coaxial Injector DynamicsCoaxial Injector Dynamics
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PENNPENNSSTATETATE Modeling and Simulation of Supercritical CombustionModeling and Simulation of Supercritical Combustion

injector
elementspraydroplet full-scale 

engine
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PENNPENNSSTATETATE Effect of Pressure on Mean Temperature DistributionsEffect of Pressure on Mean Temperature Distributions

(T∞= 300 K, uin= 15 m/s, Tin= 120 K, Din= 254 µm)(T(T∞∞= 300 K, = 300 K, uuinin= 15 m/s, T= 15 m/s, Tinin= 120 K, D= 120 K, Dinin= 254 = 254 µµm)m)

p∞ = 9.3 MPa

p∞ = 6.9 MPa
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PENNPENNSSTATETATE Effect of Pressure on Mean Velocity Distributions Effect of Pressure on Mean Velocity Distributions 

(T∞= 300 K, uin= 15 m/s, Tin= 120 K, Din= 254 µm)(T(T∞∞= 300 K, = 300 K, uuinin= 15 m/s, T= 15 m/s, Tinin= 120 K, D= 120 K, Dinin= 254 = 254 µµm)m)

p∞ = 9.3 MPa

p∞ = 6.9 MPa



Department of Mechanical & Nuclear Engineering 

PENNPENNSSTATETATE Frequency Spectral of Radial Velocity OscillationsFrequency Spectral of Radial Velocity Oscillations

p = 4.2 MPap = 4.2 MPa p = 6.9 MPap = 6.9 MPa p = 9.3 MPap = 9.3 MPa
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PENNPENNSSTATETATE Normalized Density and Temperature Distributions Normalized Density and Temperature Distributions 
along Radial Directionalong Radial Direction

T∞= 300K, uin= 15m/s, Tin= 120K, Din= 254µm)TT∞∞= 300K, = 300K, uuinin= 15m/s, T= 15m/s, Tinin= 120K, D= 120K, Dinin= 254= 254µµm)m)

• Thermal diffusivity of nitrogen is relatively lower in the region 
where the temperature is near the critical temperature. 

• Most thermal energy transferred from the hot ambient gaseous nitrogen 
to the cold jet is used to facilitate volume expansion. 

• Thermal diffusivity of nitrogen is relatively lower in the region 
where the temperature is near the critical temperature. 

• Most thermal energy transferred from the hot ambient gaseous nitrogen 
to the cold jet is used to facilitate volume expansion. 
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PENNPENNSSTATETATE Numerical ChallengesNumerical Challenges

Challenges
• machine round-off errors at low speeds
• eigenvalue disparity
• time accuracy
• real-fluid behavior
• robust and efficient numerical  treatment

Challenges
• machine round-off errors at low speeds
• eigenvalue disparity
• time accuracy
• real-fluid behavior
• robust and efficient numerical  treatment

Pr = 2.71

Solutions
• pressure decomposition
• preconditioning method
• dual time-stepping integration technique
• partial mass/molar properties
• derivation of numerical Jacobians and

thermodynamic properties based on
fundamental thermodynamic theories

Solutions
• pressure decomposition
• preconditioning method
• dual time-stepping integration technique
• partial mass/molar properties
• derivation of numerical Jacobians and

thermodynamic properties based on
fundamental thermodynamic theories

Pr = 2.74

High Pres.
Supercritical

Gas layers
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PENNPENNSSTATETATE Normalized Density and Temperature Distributions Normalized Density and Temperature Distributions 

(p∞= 9.3MPa, T∞= 300K, uin= 15m/s, Tin= 120K, Din= 254µm)(p(p∞∞= 9.3MPa, T= 9.3MPa, T∞∞= 300K, = 300K, uuinin= 15m/s, T= 15m/s, Tinin= 120K, D= 120K, Dinin= 254= 254µµm)m)

• Due to the “near critical slow down”, the temperature of nitrogen   
fluid increases slowly along the jet centerline.

• A self-similar density profile exist when                .  

• Due to the “near critical slow down”, the temperature of nitrogen   
fluid increases slowly along the jet centerline.

• A self-similar density profile exist when                .  / 15x d >
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